Back to Search
Start Over
Scale-invariant phase transition of disordered bosons in one dimension
- Publication Year :
- 2023
-
Abstract
- The disorder-induced quantum phase transition between superfluid and non-superfluid states of bosonic particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-Thouless (BKT) type. Here, we show that hard-core lattice bosons with integrable power-law hopping decaying with distance as $1/r^\alpha$ - corresponding in spin language to a $XY$ model with power-law couplings - undergo a non-BKT continuous phase transition instead. We use exact quantum Monte-Carlo methods to determine the phase diagram for different values of the exponent $\alpha$, focusing on the regime $\alpha > 2$. We find that the scaling of the superfluid stiffness with the system size is scale-invariant at the transition point for any $\alpha\leq 3$ - a behavior incompatible with the BKT scenario and typical of continuous phase transitions in higher dimension. By scaling analysis near the transition point, we find that our data are consistent with a correlation length exponent satisfying the Harris bound $\nu \geq 2$ and demonstrate a new universal behavior of disordered bosons in one dimension. For $\alpha>3$ our data are consistent with a BKT scenario where the liquid is pinned by infinitesimal disorder.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2310.17682
- Document Type :
- Working Paper