Back to Search Start Over

Global $L^\infty$-estimate for general quasilinear elliptic equations in arbitrary domains of $\mathbb{R}^N$

Authors :
Carl, Siegfried
Tehrani, Hossein
Source :
Partial Differ. Equ. Appl. 5 (2024), no. 3, Paper No. 15
Publication Year :
2023

Abstract

In this paper our main goal is to present a new global $L^\infty$-estimate for a general class of quasilinear elliptic equations of the form $$ -div \mathcal{A}(x,u,\nabla u)=\mathcal{B}(x,u,\nabla u) $$ under minimal structure conditions on the functions $\mathcal{A}$ and $\mathcal{B}$, and in arbitrary domains of $\mathbb{R}^N$. The main focus and the novelty of the paper is to prove $L^\infty$-estimate of the form $$ |u|_{\infty, \Omega}\le C \Phi(|u|_{\beta,\Omega}) $$ where $\Phi: \mathbb{R}^+\to \mathbb{R}^+$ is a data independent function with $\lim_{s\to 0^+}\Phi(s)=0$.<br />Comment: appeared

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Journal :
Partial Differ. Equ. Appl. 5 (2024), no. 3, Paper No. 15
Publication Type :
Report
Accession number :
edsarx.2310.16719
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s42985-024-00285-z