Back to Search Start Over

Topological electronic states in holey graphyne

Authors :
Jiang, Yong-Cheng
Kariyado, Toshikaze
Hu, Xiao
Source :
Nanotechnology 35, 195201 (2024)
Publication Year :
2023

Abstract

We unveil that the holey graphyne (HGY), a two-dimensional carbon allotrope where benzene rings are connected by two $-$C$\equiv$C$-$ bonds fabricated recently in a bottom-up way, exhibits topological electronic states. Using first-principles calculations and Wannier tight-binding modeling, we discover a higher-order topological invariant associated with $C_2$ symmetry of the material, and show that the resultant corner modes appear in nanoflakes matching to the structure of precursor reported previously, which are ready for direct experimental observations. In addition, we find that a band inversion between emergent $g$-like and $h$-like orbitals gives rise to a nontrivial topology characterized by $\mathbb{Z}_2$ invariant protected by an energy gap as large as 0.52 eV, manifesting helical edge states mimicking those in the prominent quantum spin Hall effect, which can be accessed experimentally after hydrogenation in HGY. We hope these findings trigger interests towards exploring the topological electronic states in HGY and related future electronics applications.<br />Comment: 19+20 pages, 4+7 figures

Details

Database :
arXiv
Journal :
Nanotechnology 35, 195201 (2024)
Publication Type :
Report
Accession number :
edsarx.2310.14625
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1361-6528/ad2483