Back to Search
Start Over
VST++: Efficient and Stronger Visual Saliency Transformer
- Publication Year :
- 2023
-
Abstract
- While previous CNN-based models have exhibited promising results for salient object detection (SOD), their ability to explore global long-range dependencies is restricted. Our previous work, the Visual Saliency Transformer (VST), addressed this constraint from a transformer-based sequence-to-sequence perspective, to unify RGB and RGB-D SOD. In VST, we developed a multi-task transformer decoder that concurrently predicts saliency and boundary outcomes in a pure transformer architecture. Moreover, we introduced a novel token upsampling method called reverse T2T for predicting a high-resolution saliency map effortlessly within transformer-based structures. Building upon the VST model, we further propose an efficient and stronger VST version in this work, i.e. VST++. To mitigate the computational costs of the VST model, we propose a Select-Integrate Attention (SIA) module, partitioning foreground into fine-grained segments and aggregating background information into a single coarse-grained token. To incorporate 3D depth information with low cost, we design a novel depth position encoding method tailored for depth maps. Furthermore, we introduce a token-supervised prediction loss to provide straightforward guidance for the task-related tokens. We evaluate our VST++ model across various transformer-based backbones on RGB, RGB-D, and RGB-T SOD benchmark datasets. Experimental results show that our model outperforms existing methods while achieving a 25% reduction in computational costs without significant performance compromise. The demonstrated strong ability for generalization, enhanced performance, and heightened efficiency of our VST++ model highlight its potential.
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2310.11725
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1109/TPAMI.2024.3388153