Back to Search
Start Over
High Order Mimetic Symplectic Methods For Hamiltonian Systems
- Publication Year :
- 2023
-
Abstract
- Hamiltonian systems are known to conserve the Hamiltonian function, which describes the energy evolution over time. Obtaining a numerical spatio-temporal scheme that accurately preserves the discretized Hamiltonian function is often a challenge. In this paper, the use of high order mimetic spatial schemes is investigated for the numerical solution of Hamiltonian equations. The mimetic operators are based on developing high order discrete analogs of the vector calculus quantities divergence and gradient. The resulting high order operators preserve the properties of their continuum ones, and are therefore said to mimic properties of conservation laws and symmetries. Symplectic fourth order schemes are implemented in this paper for the time integration of Hamiltonian systems. A theoretical framework for the energy preserving nature of the resulting schemes is also presented, followed by numerical examples.
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2310.04998
- Document Type :
- Working Paper