Back to Search
Start Over
Universality for transversal Hamilton cycles
- Publication Year :
- 2023
-
Abstract
- Let $\mathbf{G}=\{G_1, \ldots, G_m\}$ be a graph collection on a common vertex set $V$ of size $n$ such that $\delta(G_i) \geq (1+o(1))n/2$ for every $i \in [m]$. We show that $\mathbf{G}$ contains every Hamilton cycle pattern. That is, for every map $\chi: [n] \to [m]$ there is a Hamilton cycle whose $i$-th edge lies in $G_{\chi(i)}$.<br />Comment: 18 pages
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2310.04138
- Document Type :
- Working Paper