Back to Search Start Over

Exploring Benchmarks for Self-Driving Labs using Color Matching

Authors :
Ginsburg, Tobias
Hippe, Kyle
Lewis, Ryan
Ozgulbas, Doga
Cleary, Aileen
Butler, Rory
Stone, Casey
Stroka, Abraham
Foster, Ian
Publication Year :
2023

Abstract

Self Driving Labs (SDLs) that combine automation of experimental procedures with autonomous decision making are gaining popularity as a means of increasing the throughput of scientific workflows. The task of identifying quantities of supplied colored pigments that match a target color, the color matching problem, provides a simple and flexible SDL test case, as it requires experiment proposal, sample creation, and sample analysis, three common components in autonomous discovery applications. We present a robotic solution to the color matching problem that allows for fully autonomous execution of a color matching protocol. Our solution leverages the WEI science factory platform to enable portability across different robotic hardware, the use of alternative optimization methods for continuous refinement, and automated publication of results for experiment tracking and post-hoc analysis.

Subjects

Subjects :
Computer Science - Robotics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2310.00510
Document Type :
Working Paper