Back to Search
Start Over
Disentangling mappings defined on ICIS
- Publication Year :
- 2023
-
Abstract
- We study germs of hypersurfaces $(Y,0)\subset (\mathbb C^{n+1},0)$ that can be described as the image of $\mathscr A$-finite mappings $f:(X,S)\rightarrow (\mathbb C^{n+1},0)$ defined on an ICIS $(X,S)$ of dimension $n$. We extend the definition of the Jacobian module given by Fern\'andez de Bobadilla, Nu\~no-Ballesteros and Pe\~nafort-Sanchis when $X=\mathbb C^n$, which controls the image Milnor number $\mu_I(X,f)$. We apply these results to prove the case $n=2$ of the generalised Mond conjecture, which states that $\mu_I(X,f)\geq codim_{\mathscr A_e} (X,f)$, with equality if $(Y,0)$ is weighted homogeneous.<br />Comment: 19 pages
- Subjects :
- Mathematics - Algebraic Geometry
Primary 58K15, Secondary 32S30, 58K40
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2309.16193
- Document Type :
- Working Paper