Back to Search
Start Over
Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits
- Publication Year :
- 2023
-
Abstract
- Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of universal 1- and 2-qubit gates in a system of two weakly exchange-coupled electrons, bound to single phosphorus donors introduced in silicon by ion implantation. We surprisingly observe that the exchange interaction has no effect on the qubit coherence. We quantify the fidelity of the quantum operations using gate set tomography (GST), and we use the universal gate set to create entangled Bell states of the electrons spins, with fidelity ~ 93%, and concurrence 0.91 +/- 0.08. These results form the necessary basis for scaling up donor-based quantum computers.
- Subjects :
- Quantum Physics
Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2309.15463
- Document Type :
- Working Paper