Back to Search
Start Over
Smart City Digital Twin Framework for Real-Time Multi-Data Integration and Wide Public Distribution
- Publication Year :
- 2023
-
Abstract
- Digital Twins are digital replica of real entities and are becoming fundamental tools to monitor and control the status of entities, predict their future evolutions, and simulate alternative scenarios to understand the impact of changes. Thanks to the large deployment of sensors, with the increasing information it is possible to build accurate reproductions of urban environments including structural data and real-time information. Such solutions help city councils and decision makers to face challenges in urban development and improve the citizen quality of life, by ana-lysing the actual conditions, evaluating in advance through simulations and what-if analysis the outcomes of infrastructural or political chang-es, or predicting the effects of humans and/or of natural events. Snap4City Smart City Digital Twin framework is capable to respond to the requirements identified in the literature and by the international forums. Differently from other solutions, the proposed architecture provides an integrated solution for data gathering, indexing, computing and information distribution offered by the Snap4City IoT platform, therefore realizing a continuously updated Digital Twin. 3D building models, road networks, IoT devices, WoT Entities, point of interests, routes, paths, etc., as well as results from data analytical processes for traffic density reconstruction, pollutant dispersion, predictions of any kind, what-if analysis, etc., are all integrated into an accessible web interface, to support the citizens participation in the city decision processes. What-If analysis to let the user performs simulations and observe possible outcomes. As case of study, the Digital Twin of the city of Florence (Italy) is presented. Snap4City platform, is released as open-source, and made available through GitHub and as docker compose.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2309.13394
- Document Type :
- Working Paper