Back to Search Start Over

Stability of weighted extremal manifolds through blowups

Authors :
Hallam, Michael
Publication Year :
2023

Abstract

In a previous paper, we showed that the blowup of a weighted extremal K\"ahler manifold at a relatively stable fixed point admits a weighted extremal metric. Using this result, we prove that a weighted extremal manifold is relatively weighted K-polystable. In particular, a weighted cscK manifold is weighted K-polystable. This strengthens both the weighted K-semistability proved by Lahdili and Inoue, and the weighted K-polystability with respect to smooth degenerations by Apostolov--Jubert--Lahdili, allowing for possibly singular degenerations.<br />Comment: 41 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2309.02279
Document Type :
Working Paper