Back to Search Start Over

Broadband optical nonreciprocity via nonreciprocal band structure

Authors :
Hu, Ning
Tang, Zhi-Xiang
Xu, Xun-Wei
Source :
Phys. Rev. A 108, 063516 (2023)
Publication Year :
2023

Abstract

As a promising approach for optical nonreciprocity without magnetic materials, optomechanically induced nonreciprocity has great potential for all-optical controllable isolators and circulators on chips. However, as a very important issue in practical applications, the bandwidth for nonreciprocal transmission with high isolation has not been fully investigated yet. In this study we review the nonreciprocity in a Brillouin optomechanical system with single cavity and point out the challenge in achieving broad bandwidth with high isolation. To overcome this challenge, we propose a one dimensional optomechanical array to realize broadband optical nonreciprocity via nonreciprocal band structure. We exploit nonreciprocal band structure by the stimulated Brillouin scattering induced transparency with directional optical pumping, and show that it is possible to demonstrate optical nonreciprocity with both broad bandwidth and high isolation. Such Brillouin optomechanical lattices with nonreciprocal band structure, offer an avenue to explore nonreciprocal collective effects in different electromagnetic and mechanical frequency regimes, such as nonreciprocal topological photonic and phononic phases.<br />Comment: 10 pages, 6 figures

Subjects

Subjects :
Quantum Physics
Physics - Optics

Details

Database :
arXiv
Journal :
Phys. Rev. A 108, 063516 (2023)
Publication Type :
Report
Accession number :
edsarx.2309.02267
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevA.108.063516