Back to Search
Start Over
Towards Certified Probabilistic Robustness with High Accuracy
- Publication Year :
- 2023
-
Abstract
- Adversarial examples pose a security threat to many critical systems built on neural networks (such as face recognition systems, and self-driving cars). While many methods have been proposed to build robust models, how to build certifiably robust yet accurate neural network models remains an open problem. For example, adversarial training improves empirical robustness, but they do not provide certification of the model's robustness. On the other hand, certified training provides certified robustness but at the cost of a significant accuracy drop. In this work, we propose a novel approach that aims to achieve both high accuracy and certified probabilistic robustness. Our method has two parts, i.e., a probabilistic robust training method with an additional goal of minimizing variance in terms of divergence and a runtime inference method for certified probabilistic robustness of the prediction. The latter enables efficient certification of the model's probabilistic robustness at runtime with statistical guarantees. This is supported by our training objective, which minimizes the variance of the model's predictions in a given vicinity, derived from a general definition of model robustness. Our approach works for a variety of perturbations and is reasonably efficient. Our experiments on multiple models trained on different datasets demonstrate that our approach significantly outperforms existing approaches in terms of both certification rate and accuracy.
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2309.00879
- Document Type :
- Working Paper