Back to Search
Start Over
How To Overcome Confirmation Bias in Semi-Supervised Image Classification By Active Learning
- Publication Year :
- 2023
-
Abstract
- Do we need active learning? The rise of strong deep semi-supervised methods raises doubt about the usability of active learning in limited labeled data settings. This is caused by results showing that combining semi-supervised learning (SSL) methods with a random selection for labeling can outperform existing active learning (AL) techniques. However, these results are obtained from experiments on well-established benchmark datasets that can overestimate the external validity. However, the literature lacks sufficient research on the performance of active semi-supervised learning methods in realistic data scenarios, leaving a notable gap in our understanding. Therefore we present three data challenges common in real-world applications: between-class imbalance, within-class imbalance, and between-class similarity. These challenges can hurt SSL performance due to confirmation bias. We conduct experiments with SSL and AL on simulated data challenges and find that random sampling does not mitigate confirmation bias and, in some cases, leads to worse performance than supervised learning. In contrast, we demonstrate that AL can overcome confirmation bias in SSL in these realistic settings. Our results provide insights into the potential of combining active and semi-supervised learning in the presence of common real-world challenges, which is a promising direction for robust methods when learning with limited labeled data in real-world applications.<br />Comment: Accepted @ ECML PKDD 2023. This is the author's version of the work. The definitive Version of Record will be published in the Proceedings of ECML PKDD 2023
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2308.08224
- Document Type :
- Working Paper