Back to Search
Start Over
The infimum values of the probability functions for some infinitely divisible distributions motivated by Chv\'{a}tal's theorem
- Publication Year :
- 2023
-
Abstract
- Let $B(n,p)$ denote a binomial random variable with parameters $n$ and $p$. Chv\'{a}tal's theorem says that for any fixed $n\geq 2$, as $m$ ranges over $\{0,\ldots,n\}$, the probability $q_m:=P(B(n,m/n)\leq m)$ is the smallest when $m$ is closest to $\frac{2n}{3}$. Motivated by this theorem, in this paper we consider the infimum value of the probability $P(X\leq \kappa E[X])$, where $\kappa$ is a positive real number, and $X$ is a random variable whose distribution belongs to some infinitely divisible distributions including the inverse Gaussian, log-normal, Gumbel and logistic distributions.<br />Comment: 10 pages
- Subjects :
- Mathematics - Probability
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2308.07678
- Document Type :
- Working Paper