Back to Search Start Over

An Extensive $\textit{Hubble Space Telescope}$ Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae

Authors :
Hsu, Brian
Blanchard, Peter K.
Berger, Edo
Gomez, Sebastian
Publication Year :
2023

Abstract

We present an extensive $\textit{Hubble Space Telescope}$ ($\textit{HST}$) rest-frame ultraviolet (UV) imaging study of the locations of Type I superluminous supernovae (SLSNe) within their host galaxies. The sample includes 65 SLSNe with detected host galaxies in the redshift range $z\approx 0.05-2$. Using precise astrometric matching with SN images, we determine the distributions of physical and host-normalized offsets relative to the host centers, as well as the fractional flux distribution relative to the underlying UV light distribution. We find that the host-normalized offsets of SLSNe roughly track an exponential disk profile, but exhibit an overabundance of sources with large offsets of $1.5-4$ times their host half-light radius. The SLSNe normalized offsets are systematically larger than those of long gamma-ray bursts (LGRBs), and even Type Ib/c and II SNe. Furthermore, we find that about 40\% of all SLSNe occur in the dimmest regions of their host galaxies (fractional flux of 0), in stark contrast to LGRBs and Type Ib/c and II SNe. We do not detect any significant trends in the locations of SLSNe as a function of redshift, or as a function of explosion and magnetar engine parameters inferred from modeling of their optical lights curves. The significant difference in SLSN locations compared to LGRBs (and normal core-collapse SNe) suggests that at least some of their progenitors follow a different evolutionary path. We speculate that SLSNe arise from massive runaway stars from disrupted binary systems, with velocities of $\sim 10^2$ km s$^{-1}$.<br />Comment: 31 pages, 14 figures, 5 tables. Submitted to ApJ. Comments welcomed

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2308.07271
Document Type :
Working Paper