Back to Search Start Over

Finding Long Directed Cycles Is Hard Even When DFVS Is Small Or Girth Is Large

Authors :
Jacob, Ashwin
Włodarczyk, Michał
Zehavi, Meirav
Publication Year :
2023

Abstract

We study the parameterized complexity of two classic problems on directed graphs: Hamiltonian Cycle and its generalization {\sc Longest Cycle}. Since 2008, it is known that Hamiltonian Cycle is W[1]-hard when parameterized by directed treewidth [Lampis et al., ISSAC'08]. By now, the question of whether it is FPT parameterized by the directed feedback vertex set (DFVS) number has become a longstanding open problem. In particular, the DFVS number is the largest natural directed width measure studied in the literature. In this paper, we provide a negative answer to the question, showing that even for the DFVS number, the problem remains W[1]-hard. As a consequence, we also obtain that Longest Cycle is W[1]-hard on directed graphs when parameterized multiplicatively above girth, in contrast to the undirected case. This resolves an open question posed by Fomin et al. [ACM ToCT'21] and Gutin and Mnich [arXiv:2207.12278]. Our hardness results apply to the path versions of the problems as well. On the positive side, we show that Longest Path parameterized multiplicatively above girth} belongs to the class XP.<br />Comment: Accepted to ESA 2023

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2308.06145
Document Type :
Working Paper