Back to Search
Start Over
Arithmetic progressions and holomorphic phase retrieval
- Source :
- Bull. London Math. Soc. (2024)
- Publication Year :
- 2023
-
Abstract
- We study the determination of a holomorphic function from its absolute value. Given a parameter $\theta \in \mathbb{R}$, we derive the following characterization of uniqueness in terms of rigidity of a set $\Lambda \subseteq \mathbb{R}$: if $\mathcal{F}$ is a vector space of entire functions containing all exponentials $e^{\xi z}, \, \xi \in \mathbb{C} \setminus \{ 0 \}$, then every $F \in \mathcal{F}$ is uniquely determined up to a unimodular phase factor by $\{|F(z)| : z \in e^{i\theta}(\mathbb{R} + i\Lambda)\}$ if and only if $\Lambda$ is not contained in an arithmetic progression $a\mathbb{Z}+b$. Leveraging this insight, we establish a series of consequences for Gabor phase retrieval and Pauli-type uniqueness problems. For instance, $\mathbb{Z} \times \tilde{\mathbb{Z}}$ is a uniqueness set for the Gabor phase retrieval problem in $L^2(\mathbb{R}_+)$, provided that $\tilde{\mathbb{Z}}$ is a suitable perturbation of the integers.<br />Comment: 14 pages
Details
- Database :
- arXiv
- Journal :
- Bull. London Math. Soc. (2024)
- Publication Type :
- Report
- Accession number :
- edsarx.2308.05722
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1112/blms.13134