Back to Search
Start Over
$L^p$-Minkowski Problem under Curvature Pinching
- Publication Year :
- 2023
-
Abstract
- Let $K$ be a smooth, origin-symmetric, strictly convex body in $\mathbb{R}^n$. If for some $\ell\in GL(n,\mathbb{R})$, the anisotropic Riemannian metric $\frac{1}{2}D^2 \Vert\cdot\Vert_{\ell K}^2$, encapsulating the curvature of $\ell K$, is comparable to the standard Euclidean metric of $\mathbb{R}^{n}$ up-to a factor of $\gamma > 1$, we show that $K$ satisfies the even $L^p$-Minkowski inequality and uniqueness in the even $L^p$-Minkowski problem for all $p \geq p_\gamma := 1 - \frac{n+1}{\gamma}$. This result is sharp as $\gamma \searrow 1$ (characterizing centered ellipsoids in the limit) and improves upon the classical Minkowski inequality for all $\gamma < \infty$. In particular, whenever $\gamma \leq n+1$, the even log-Minkowski inequality and uniqueness in the even log-Minkowski problem hold.<br />Comment: 19 pages. Final version, to appear in International Mathematics Research Notices
- Subjects :
- Mathematics - Differential Geometry
Mathematics - Functional Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2307.16484
- Document Type :
- Working Paper