Back to Search Start Over

Leptogenesis in Parity Solutions to the Strong CP Problem and Standard Model Parameters

Authors :
Carrasco-Martinez, Juanca
Dunsky, David I.
Hall, Lawrence J.
Harigaya, Keisuke
Publication Year :
2023

Abstract

We study the simplest theories with exact spacetime parity that solve the strong CP problem and successfully generate the cosmological baryon asymmetry via decays of right-handed neutrinos. Lower bounds are derived for the masses of the right-handed neutrinos and for the scale of spontaneous parity breaking, $v_R$. For generic thermal leptogenesis, $v_R \gtrsim 10^{12}$ GeV, unless the small observed neutrino masses arise from fine-tuning. We compute $v_R$ in terms of the top quark mass, the QCD coupling, and the Higgs boson mass and find this bound is consistent with current data at $1 \sigma$. Future precision measurements of these parameters may provide support for the theory or, if $v_R$ is determined to be below $10^{12}$ GeV, force modifications. However, modified cosmologies do not easily allow reductions in $v_R$ -- no reduction is possible if leptogenesis occurs in the collisions of domain walls formed at parity breaking, and at most a factor 10 reduction is possible with non-thermal leptogenesis. Standard Model parameters that yield low values for $v_R$ can only be accommodated by having a high degree of degeneracy among the right-handed neutrinos involved in leptogenesis. If future precision measurements determine $v_R$ to be above $10^{12}$ GeV, it is likely that higher-dimensional operators of the theory will yield a neutron electric dipole moment accessible to ongoing experiments. This is especially true in a simple UV completion of the neutrino sector, involving gauge singlet fermions, where the bound from successful leptogenesis is strengthened to $v_R \gtrsim 10^{13}$ GeV.<br />Comment: 41 pages, 12 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2307.15731
Document Type :
Working Paper