Back to Search Start Over

A Tale of Two Disks: Mapping the Milky Way with the Final Data Release of APOGEE

Authors :
Imig, Julie
Price, Cathryn
Holtzman, Jon A.
Stone-Martinez, Alexander
Majewski, Steven R.
Weinberg, David H.
Johnson, Jennifer A.
Prieto, Carlos Allende
Beaton, Rachael L.
Beers, Timothy C.
Bizyaev, Dmitry
Blanton, Michael R.
Brownstein, Joel R.
Cunha, Katia
Fernández-Trincado, José G.
Feuillet, Diane K.
Hasselquist, Sten
Hayes, Christian R.
Jönsson, Henrik
Lane, Richard R.
Lian, Jianhui
Mészáros, Szabolcs
Nidever, David L.
Robin, Annie C.
Shetrone, Matthew
Smith, Verne
Wilson, John C.
Source :
ApJ 954 124 (2023)
Publication Year :
2023

Abstract

We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]), $\alpha$-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-$\alpha$ disk, high-$\alpha$ disk, and total population independently. The low-$\alpha$ disk exhibits a negative radial metallicity gradient of $-0.06 \pm 0.001$ dex kpc$^{-1}$, which flattens with distance from the midplane. The high-$\alpha$ disk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]-[Fe/H] plane and in the [Mg/Fe]-age relation persist across the entire disk. The age estimates have typical uncertainties of $\sim0.15$ in $\log$(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.<br />Comment: 41 pages, 32 figures, accepted to ApJ

Details

Database :
arXiv
Journal :
ApJ 954 124 (2023)
Publication Type :
Report
Accession number :
edsarx.2307.13887
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/ace9b8