Back to Search
Start Over
The best approximation of a given function in $L^2$-norm by Lipschitz functions with gradient constraint
- Publication Year :
- 2023
-
Abstract
- The starting point of this paper is the study of the asymptotic behavior, as $p\to\infty$, of the following minimization problem $$ \min\left\{\frac1{p}\int|\nabla v|^{p}+\frac12\int(v-f)^2 \,, \quad \ v\in W^{1,p} (\Omega)\right\}. $$ We show that the limit problem provides the best approximation, in the $L^2$-norm, of the datum $f$ among all Lipschitz functions with Lipschitz constant less or equal than one. Moreover such approximation verifies a suitable PDE in the viscosity sense. After the analysis of the model problem above, we consider the asymptotic behavior of a related family of nonvariational equations and, finally, we also deal with some functionals involving the $(N-1)$-Hausdorff measure of the jump set of the function.
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2307.12895
- Document Type :
- Working Paper