Back to Search Start Over

Existence of strong solutions of fractional Brownian sheet driven SDEs with integrable drift

Authors :
Bogso, Antoine-Marie
Pamen, Olivier Menoukeu
Proske, Frank
Publication Year :
2023

Abstract

We prove the existence of a unique Malliavin differentiable strong solution to a stochastic differential equation on the plane with merely integrable coefficients driven by the fractional Brownian sheet with Hurst parameter $H=(H_1,H_2)\in(0,\frac{1}{2})^2$. The proof of this result relies on a compactness criterion for square integrable Wiener functionals from Malliavin calculus ([Da Prato, Malliavin and Nualart, 1992]), variational techniques developed in the case of fractional Brownian motion ([Ba\~nos, Nielssen, and Proske, 2020]) and the concept of sectorial local nondeterminism (introduced in [Khoshnevisan and Xiao, 2007]). The latter concept enable us to improve the bound of the Hurst parameter (compare with [Ba\~nos, Nielssen, and Proske, 2020]).<br />Comment: 61 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2307.09086
Document Type :
Working Paper