Back to Search Start Over

Audio-Visual Speech Enhancement Using Self-supervised Learning to Improve Speech Intelligibility in Cochlear Implant Simulations

Authors :
Lai, Richard Lee
Hou, Jen-Cheng
Gogate, Mandar
Dashtipour, Kia
Hussain, Amir
Tsao, Yu
Publication Year :
2023

Abstract

Individuals with hearing impairments face challenges in their ability to comprehend speech, particularly in noisy environments. The aim of this study is to explore the effectiveness of audio-visual speech enhancement (AVSE) in enhancing the intelligibility of vocoded speech in cochlear implant (CI) simulations. Notably, the study focuses on a challenged scenario where there is limited availability of training data for the AVSE task. To address this problem, we propose a novel deep neural network framework termed Self-Supervised Learning-based AVSE (SSL-AVSE). The proposed SSL-AVSE combines visual cues, such as lip and mouth movements, from the target speakers with corresponding audio signals. The contextually combined audio and visual data are then fed into a Transformer-based SSL AV-HuBERT model to extract features, which are further processed using a BLSTM-based SE model. The results demonstrate several key findings. Firstly, SSL-AVSE successfully overcomes the issue of limited data by leveraging the AV-HuBERT model. Secondly, by fine-tuning the AV-HuBERT model parameters for the target SE task, significant performance improvements are achieved. Specifically, there is a notable enhancement in PESQ (Perceptual Evaluation of Speech Quality) from 1.43 to 1.67 and in STOI (Short-Time Objective Intelligibility) from 0.70 to 0.74. Furthermore, the performance of the SSL-AVSE was evaluated using CI vocoded speech to assess the intelligibility for CI users. Comparative experimental outcomes reveal that in the presence of dynamic noises encountered during human conversations, SSL-AVSE exhibits a substantial improvement. The NCM (Normal Correlation Matrix) values indicate an increase of 26.5% to 87.2% compared to the noisy baseline.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2307.07748
Document Type :
Working Paper