Back to Search
Start Over
Scalable generation and detection of on-demand W states in nanophotonic circuits
- Publication Year :
- 2023
-
Abstract
- Quantum physics phenomena, entanglement and coherence, are crucial for quantum information protocols, but understanding these in systems with more than two parts is challenging due to increasing complexity. The W state, a multipartite entangled state, is notable for its robustness and benefits in quantum communication. Here, we generate an 8-mode on-demand single photon W states, using nanowire quantum dots and a silicon nitride photonic chip. We demonstrate a reliable, scalable technique for reconstructing W-state in photonic circuits using Fourier and real-space imaging, supported by the Gerchberg-Saxton phase retrieval algorithm. Additionally, we utilize an entanglement witness to distinguish between mixed and entangled states, thereby affirming the entangled nature of our generated state. The study provides a new imaging approach of assessing multipartite entanglement in W-states, paving the way for further progress in image processing and Fourier-space analysis techniques for complex quantum systems.
- Subjects :
- Quantum Physics
Physics - Optics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2307.06116
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1021/acs.nanolett.3c01551