Back to Search
Start Over
Planar Tur\'an number of the 7-cycle
- Publication Year :
- 2023
-
Abstract
- The $\textit{planar Tur\'an number}$ $\textrm{ex}_{\mathcal P}(n,H)$ of a graph $H$ is the maximum number of edges in an $n$-vertex planar graph without $H$ as a subgraph. Let $C_{\ell}$ denote the cycle of length $\ell$. The planar Tur\'an number $\textrm{ex}_{\mathcal P}(n,C_{\ell})$ behaves differently for $\ell\le 10$ and for $\ell\ge 11$, and it is known when $\ell \in \{3,4,5,6\}$. We prove that $\textrm{ex}_{\mathcal P}(n,C_7) \le \frac{18n}{7} - \frac{48}{7}$ for all $n > 38$, and show that equality holds for infinitely many integers $n$.
- Subjects :
- Mathematics - Combinatorics
05C35, 05C10
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2306.13594
- Document Type :
- Working Paper