Back to Search Start Over

What is the nature of the HESS J1731-347 compact object?

Authors :
Sagun, Violetta
Giangrandi, Edoardo
Dietrich, Tim
Ivanytskyi, Oleksii
Negreiros, Rodrigo
Providência, Constança
Source :
Astrophys. J. 958, 49 (2023)
Publication Year :
2023

Abstract

Once further confirmed in future analyses, the radius and mass measurement of HESS J1731-347 with $M=0.77^{+0.20}_{-0.17}~M_{\odot}$ and $R=10.4^{+0.86}_{-0.78}~\rm km$ will be among the lightest and smallest compact objects ever detected. This raises many questions about its nature and opens up the window for different theories to explain such a measurement. In this article, we use the information from Doroshenko et al. (2022) on the mass, radius, and surface temperature together with the multimessenger observations of neutron stars to investigate the possibility that HESS J1731-347 is one of the lightest observed neutron star, a strange quark star, a hybrid star with an early deconfinement phase transition, or a dark matter-admixed neutron star. The nucleonic and quark matter are modeled within realistic equation of states (EOSs) with a self-consistent calculation of the pairing gaps in quark matter. By performing the joint analysis of the thermal evolution and mass-radius constraint, we find evidence that within a 1$\sigma$ confidence level, HESS J1731-347 is consistent with the neutron star scenario with the soft EOS as well as with a strange and hybrid star with the early deconfinement phase transition with a strong quark pairing and neutron star admixed with dark matter.<br />Comment: 9 pages, 3 figures

Details

Database :
arXiv
Journal :
Astrophys. J. 958, 49 (2023)
Publication Type :
Report
Accession number :
edsarx.2306.12326
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/acfc9e