Back to Search
Start Over
Entanglement Growth and Minimal Membranes in $(d+1)$ Random Unitary Circuits
- Source :
- Phys. Rev. Lett. 131, 230403 (2023)
- Publication Year :
- 2023
-
Abstract
- Understanding the nature of entanglement growth in many-body systems is one of the fundamental questions in quantum physics. Here, we study this problem by characterizing the entanglement fluctuations and distribution of $(d+1)$ qubit lattice evolved under a random unitary circuit. Focusing on Clifford gates, we perform extensive numerical simulations of random circuits in $1\le d\le 4$ dimensions. Our findings demonstrate that properties of growth of bipartite entanglement entropy are characterized by the roughening exponents of a $d$-dimensional membrane in a $(d+1)$ elastic medium.<br />Comment: 4 pages
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. Lett. 131, 230403 (2023)
- Publication Type :
- Report
- Accession number :
- edsarx.2306.04764
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevLett.131.230403