Back to Search Start Over

Entanglement Growth and Minimal Membranes in $(d+1)$ Random Unitary Circuits

Authors :
Sierant, Piotr
SchirĂ², Marco
Lewenstein, Maciej
Turkeshi, Xhek
Source :
Phys. Rev. Lett. 131, 230403 (2023)
Publication Year :
2023

Abstract

Understanding the nature of entanglement growth in many-body systems is one of the fundamental questions in quantum physics. Here, we study this problem by characterizing the entanglement fluctuations and distribution of $(d+1)$ qubit lattice evolved under a random unitary circuit. Focusing on Clifford gates, we perform extensive numerical simulations of random circuits in $1\le d\le 4$ dimensions. Our findings demonstrate that properties of growth of bipartite entanglement entropy are characterized by the roughening exponents of a $d$-dimensional membrane in a $(d+1)$ elastic medium.<br />Comment: 4 pages

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 131, 230403 (2023)
Publication Type :
Report
Accession number :
edsarx.2306.04764
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.131.230403