Back to Search
Start Over
Spiral Minimal Products
- Publication Year :
- 2023
-
Abstract
- This paper exhibits a structural strategy to produce new minimal submanifolds in spheres based on two given ones. The method is to spin the given minimal submanifolds by a curve $\gamma\subset \mathbb S^3$ in a balanced way and leads to resulting minimal submanifolds $-$ spiral minimal products, which form a two-dimensional family arising from intriguing pendulum phenomena decided by $C$ and $\tilde C$. With $C=0$, we generalize the construction of minimal tori in $\mathbb S^3$ explained in [Bre13] to higher dimensional situations. When $C=-1$, we recapture previous relative work in [CLU06] and [HK12] for special Legendrian submanifolds in spheres, and moreover, can gain numerous $\mathscr C$-totally real and totally real embedded minimal submanifolds in spheres and in complex projective spaces respectively. A key ingredient of the paper is to apply a beautiful extension result of minimal submanifolds by Harvey and Lawson [HL75] for a rotational reflection principle in our situation to establish curve $\gamma$.<br />Comment: Further improved version (52 pages, 10 figures), to be submitted
- Subjects :
- Mathematics - Differential Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2306.03328
- Document Type :
- Working Paper