Back to Search Start Over

RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems

Authors :
Liu, Tianyang
Xu, Canwen
McAuley, Julian
Publication Year :
2023

Abstract

Large Language Models (LLMs) have greatly advanced code auto-completion systems, with a potential for substantial productivity enhancements for developers. However, current benchmarks mainly focus on single-file tasks, leaving an assessment gap for more complex, real-world, multi-file programming scenarios. To fill this gap, we introduce RepoBench, a new benchmark specifically designed for evaluating repository-level code auto-completion systems. RepoBench supports both Python and Java and consists of three interconnected evaluation tasks: RepoBench-R (Retrieval), RepoBench-C (Code Completion), and RepoBench-P (Pipeline). Each task respectively measures the system's ability to retrieve the most relevant code snippets from other files as cross-file context, predict the next line of code with cross-file and in-file context, and handle complex tasks that require a combination of both retrieval and next-line prediction. RepoBench aims to facilitate a more complete comparison of performance and encouraging continuous improvement in auto-completion systems. RepoBench is publicly available at https://github.com/Leolty/repobench.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2306.03091
Document Type :
Working Paper