Back to Search
Start Over
Tunable Bose-Einstein condensation and roton-like excitation spectra with dipolar exciton-polaritons in crossed fields
- Publication Year :
- 2023
-
Abstract
- We develop the many-body theory of dipolar exciton-polaritons in an optical microcavity in crossed transverse electric and in-plane magnetic fields. Even for relatively weak fields, we reveal the existence of two minima in the bare lower-polariton dispersion, which give rise to the tuneable transition between the polariton Bose-Einstein condensate and that of excitons, produced by the competition between these minima. We predict that such dipolar condensate exhibits a roton-maxon character of the excitation spectrum, never before observed for polaritons. We show that upon the transition between the two condensation regimes, the weak correlations in the polariton gas give way to the intermediate interparticle correlations characteristic for excitons, and that the transition is accompanied by a sharp quenching of photoluminescence as the lifetime is increased by several orders of magnitude. While in the polariton regime, the luminescence peak corresponding to the condensate is shifted to a non-zero angle. The angular dependence of the two-photon decay time in the Hanbury Brown and Twiss experiment is calculated and used as a tool to evidence the formation of the macroscopically-coherent state. Our proposal opens opportunities towards manipulating the superfluid properties and extended-range dipole-dipole correlations of exciton-polariton condensates.<br />Comment: 17 pages, 7 figures
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2306.02202
- Document Type :
- Working Paper