Back to Search Start Over

Detecting Low Pass Graph Signals via Spectral Pattern: Sampling Complexity and Applications

Authors :
Zhang, Chenyue
He, Yiran
Wai, Hoi-To
Publication Year :
2023

Abstract

This paper proposes a blind detection problem for low pass graph signals. Without assuming knowledge of the exact graph topology, we aim to detect if a set of graph signal observations are generated from a low pass graph filter. Our problem is motivated by the widely adopted assumption of low pass (a.k.a.~smooth) signals required by many existing works in graph signal processing (GSP), as well as the longstanding problem of network dynamics identification. Focusing on detecting low pass graph signals on modular graphs whose cutoff frequency coincides with the number of clusters in the graph, we propose to leverage the unique spectral pattern exhibited by such low pass graph signals. We analyze the sample complexity of these detectors considering the effects of graph filter's properties, random delays, and other parameters. We show novel applications of the blind detector on robustifying graph learning, identifying antagonistic ties in opinion dynamics, and detecting anomalies in power systems. Numerical experiments validate our findings.<br />Comment: 15 pages, 11 figures, accepted by IEEE Transactions on Signal Processing

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2306.01553
Document Type :
Working Paper