Back to Search Start Over

DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm

Authors :
Ding, Lisang
Jin, Kexin
Ying, Bicheng
Yuan, Kun
Yin, Wotao
Publication Year :
2023

Abstract

Decentralized Stochastic Gradient Descent (SGD) is an emerging neural network training approach that enables multiple agents to train a model collaboratively and simultaneously. Rather than using a central parameter server to collect gradients from all the agents, each agent keeps a copy of the model parameters and communicates with a small number of other agents to exchange model updates. Their communication, governed by the communication topology and gossip weight matrices, facilitates the exchange of model updates. The state-of-the-art approach uses the dynamic one-peer exponential-2 topology, achieving faster training times and improved scalability than the ring, grid, torus, and hypercube topologies. However, this approach requires a power-of-2 number of agents, which is impractical at scale. In this paper, we remove this restriction and propose \underline{D}ecentralized \underline{SGD} with \underline{C}ommunication-optimal \underline{E}xact \underline{C}onsensus \underline{A}lgorithm (DSGD-CECA), which works for any number of agents while still achieving state-of-the-art properties. In particular, DSGD-CECA incurs a unit per-iteration communication overhead and an $\tilde{O}(n^3)$ transient iteration complexity. Our proof is based on newly discovered properties of gossip weight matrices and a novel approach to combine them with DSGD's convergence analysis. Numerical experiments show the efficiency of DSGD-CECA.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2306.00256
Document Type :
Working Paper