Back to Search Start Over

Using evolutionary machine learning to characterize and optimize co-pyrolysis of biomass feedstocks and polymeric wastes

Authors :
Shahbeik, Hossein
Shafizadeh, Alireza
Nadian, Mohammad Hossein
Jeddi, Dorsa
Mirjalili, Seyedali
Yang, Yadong
Lam, Su Shiung
Pan, Junting
Tabatabaei, Meisam
Aghbashlo, Mortaza
Source :
Journal of Cleaner Production, Volume 387, 10 February 2023, 135881
Publication Year :
2023

Abstract

Co-pyrolysis of biomass feedstocks with polymeric wastes is a promising strategy for improving the quantity and quality parameters of the resulting liquid fuel. Numerous experimental measurements are typically conducted to find the optimal operating conditions. However, performing co-pyrolysis experiments is highly challenging due to the need for costly and lengthy procedures. Machine learning (ML) provides capabilities to cope with such issues by leveraging on existing data. This work aims to introduce an evolutionary ML approach to quantify the (by)products of the biomass-polymer co-pyrolysis process. A comprehensive dataset covering various biomass-polymer mixtures under a broad range of process conditions is compiled from the qualified literature. The database was subjected to statistical analysis and mechanistic discussion. The input features are constructed using an innovative approach to reflect the physics of the process. The constructed features are subjected to principal component analysis to reduce their dimensionality. The obtained scores are introduced into six ML models. Gaussian process regression model tuned by particle swarm optimization algorithm presents better prediction performance (R2 > 0.9, MAE < 0.03, and RMSE < 0.06) than other developed models. The multi-objective particle swarm optimization algorithm successfully finds optimal independent parameters.

Details

Database :
arXiv
Journal :
Journal of Cleaner Production, Volume 387, 10 February 2023, 135881
Publication Type :
Report
Accession number :
edsarx.2305.16350
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jclepro.2023.135881