Back to Search Start Over

Feasible Action-Space Reduction as a Metric of Causal Responsibility in Multi-Agent Spatial Interactions

Authors :
George, Ashwin
Siebert, Luciano Cavalcante
Abbink, David
Zgonnikov, Arkady
Publication Year :
2023

Abstract

Modelling causal responsibility in multi-agent spatial interactions is crucial for safety and efficiency of interactions of humans with autonomous agents. However, current formal metrics and models of responsibility either lack grounding in ethical and philosophical concepts of responsibility, or cannot be applied to spatial interactions. In this work we propose a metric of causal responsibility which is tailored to multi-agent spatial interactions, for instance interactions in traffic. In such interactions, a given agent can, by reducing another agent's feasible action space, influence the latter. Therefore, we propose feasible action space reduction (FeAR) as a metric of causal responsibility among agents. Specifically, we look at ex-post causal responsibility for simultaneous actions. We propose the use of Moves de Rigueur (MdR) - a consistent set of prescribed actions for agents - to model the effect of norms on responsibility allocation. We apply the metric in a grid world simulation for spatial interactions and show how the actions, contexts, and norms affect the causal responsibility ascribed to agents. Finally, we demonstrate the application of this metric in complex multi-agent interactions. We argue that the FeAR metric is a step towards an interdisciplinary framework for quantifying responsibility that is needed to ensure safety and meaningful human control in human-AI systems.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2305.15003
Document Type :
Working Paper
Full Text :
https://doi.org/10.3233/FAIA230349