Back to Search Start Over

Chest X-ray Image Classification: A Causal Perspective

Authors :
Nie, Weizhi
Zhang, Chen
Song, Dan
Zhao, Lina
Bai, Yunpeng
Xie, Keliang
Liu, Anan
Publication Year :
2023

Abstract

The chest X-ray (CXR) is one of the most common and easy-to-get medical tests used to diagnose common diseases of the chest. Recently, many deep learning-based methods have been proposed that are capable of effectively classifying CXRs. Even though these techniques have worked quite well, it is difficult to establish whether what these algorithms actually learn is the cause-and-effect link between diseases and their causes or just how to map labels to photos.In this paper, we propose a causal approach to address the CXR classification problem, which constructs a structural causal model (SCM) and uses the backdoor adjustment to select effective visual information for CXR classification. Specially, we design different probability optimization functions to eliminate the influence of confounders on the learning of real causality. Experimental results demonstrate that our proposed method outperforms the open-source NIH ChestX-ray14 in terms of classification performance.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2305.12072
Document Type :
Working Paper