Back to Search Start Over

(DarkAI) Mapping the large-scale density field of dark matter using artificial intelligence

Authors :
Wang, Zitong
Shi, Feng
Yang, Xiaohu
Li, Qingyang
Liu, Yanming
Li, Xiaoping
Source :
SCIENCE CHINA Physics, Mechanics & Astronomy, January 2024 Vol. 67 No. 1: 219513
Publication Year :
2023

Abstract

Herein, we present a deep-learning technique for reconstructing the dark-matter density field from the redshift-space distribution of dark-matter halos. We built a UNet-architecture neural network and trained it using the COmoving Lagrangian Acceleration fast simulation, which is an approximation of the N-body simulation with $512^3$ particles in a box size of 500 Mpc $h^{-1}$. Further, we tested the resulting UNet model not only with training-like test samples but also with standard N-body simulations, such as the Jiutian simulation with $6144^3$ particles in a box size of 1000 Mpc $h^{-1}$ and the ELUCID simulation, which has a different cosmology. The real-space dark-matter density fields in the three simulations can be reconstructed reliably with only a small reduction of the cross-correlation power spectrum at 1% and 10% levels at $k=0.1$ and $0.3~h\mathrm{Mpc^{-1}}$, respectively. The reconstruction clearly helps to correct for redshift-space distortions and is unaffected by the different cosmologies between the training (Planck2018) and test samples (WMAP5). Furthermore, we tested the application of the UNet-reconstructed density field to obtain the velocity \& tidal field and found that this approach provides better results compared to the traditional approach based on the linear bias model, showing a 12.2% improvement in the correlation slope and a 21.1% reduction in the scatter between the predicted and true velocities. Thus, our method is highly efficient and has excellent extrapolation reliability beyond the training set. This provides an ideal solution for determining the three-dimensional underlying density field from the plentiful galaxy survey data.<br />Comment: 14 pages, 16 figures

Details

Database :
arXiv
Journal :
SCIENCE CHINA Physics, Mechanics & Astronomy, January 2024 Vol. 67 No. 1: 219513
Publication Type :
Report
Accession number :
edsarx.2305.11431
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s11433-023-2192-9