Back to Search
Start Over
Developing Distributed High-performance Computing Capabilities of an Open Science Platform for Robust Epidemic Analysis
- Publication Year :
- 2023
-
Abstract
- COVID-19 had an unprecedented impact on scientific collaboration. The pandemic and its broad response from the scientific community has forged new relationships among domain experts, mathematical modelers, and scientific computing specialists. Computationally, however, it also revealed critical gaps in the ability of researchers to exploit advanced computing systems. These challenging areas include gaining access to scalable computing systems, porting models and workflows to new systems, sharing data of varying sizes, and producing results that can be reproduced and validated by others. Informed by our team's work in supporting public health decision makers during the COVID-19 pandemic and by the identified capability gaps in applying high-performance computing (HPC) to the modeling of complex social systems, we present the goals, requirements, and initial implementation of OSPREY, an open science platform for robust epidemic analysis. The prototype implementation demonstrates an integrated, algorithm-driven HPC workflow architecture, coordinating tasks across federated HPC resources, with robust, secure and automated access to each of the resources. We demonstrate scalable and fault-tolerant task execution, an asynchronous API to support fast time-to-solution algorithms, an inclusive, multi-language approach, and efficient wide-area data management. The example OSPREY code is made available on a public repository.
- Subjects :
- Computer Science - Distributed, Parallel, and Cluster Computing
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2304.14244
- Document Type :
- Working Paper