Back to Search Start Over

A probabilistic approach for acoustic emission based monitoring techniques: with application to structural health monitoring

Authors :
Lindley, C. A.
Jones, M. R.
Rogers, T. J.
Cross, E. J.
Dwyer-Joyce, R. S.
Dervilis, N.
Worden, K.
Source :
Mechanical Systems and Signal Processing 208:110958-110958 2024
Publication Year :
2023

Abstract

It has been demonstrated that acoustic-emission (AE), inspection of structures can offer advantages over other types of monitoring techniques in the detection of damage; namely, an increased sensitivity to damage, as well as an ability to localise its source. There are, however, numerous challenges associated with the analysis of AE data. One issue is the high sampling frequencies required to capture AE activity. In just a few seconds, a recording can generate very high volumes of data, of which a significant portion may be of little interest for analysis. Identifying the individual AE events in a recorded time-series is therefore a necessary procedure to reduce the size of the dataset. Another challenge that is also generally encountered in practice, is determining the sources of AE, which is an important exercise if one wishes to enhance the quality of the diagnostic scheme. In this paper, a state-of-the-art technique is presented that can automatically identify AE events, and simultaneously help in their characterisation from a probabilistic perspective. A nonparametric Bayesian approach, based on the Dirichlet process (DP), is employed to overcome some of the challenges associated with these tasks. Two main sets of AE data are considered in this work: (1) from a journal bearing in operation, and (2) from an Airbus A320 main landing gear subjected to fatigue testing.

Subjects

Subjects :
Statistics - Applications

Details

Database :
arXiv
Journal :
Mechanical Systems and Signal Processing 208:110958-110958 2024
Publication Type :
Report
Accession number :
edsarx.2304.13457
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.ymssp.2023.110958