Back to Search
Start Over
Magnetism-induced band-edge shift as mechanism for magnetoconductance in CrPS$_4$ transistors
- Publication Year :
- 2023
-
Abstract
- Transistors realized on 2D antiferromagnetic semiconductor CrPS$_4$ exhibit large magnetoconductance, due to magnetic-field-induced changes in magnetic state. The microscopic mechanism coupling conductance and magnetic state is not understood. We identify it by analyzing the evolution of the parameters determining the transistor behavior -- carrier mobility and threshold voltage -- with temperature and magnetic field. For temperatures T near the N\'eel temperature $T_N$, the magnetoconductance originates from a mobility increase due to the applied magnetic field that reduces spin fluctuation induced disorder. For $T << T_N$, instead, what changes is the threshold voltage, so that increasing the field at fixed gate voltage increases the density of accumulated electrons. The phenomenon is explained by a conduction band-edge shift correctly predicted by \emph{ab-initio} calculations. Our results demonstrate that the bandstructure of CrPS$_4$ depends on its magnetic state and reveal a mechanism for magnetoconductance that had not been identified earlier.
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2304.12712
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1021/acs.nanolett.3c02274