Back to Search Start Over

Dual Stage Stylization Modulation for Domain Generalized Semantic Segmentation

Authors :
Tjio, Gabriel
Liu, Ping
Kwoh, Chee-Keong
Zhou, Joey Tianyi
Publication Year :
2023

Abstract

Obtaining sufficient labeled data for training deep models is often challenging in real-life applications. To address this issue, we propose a novel solution for single-source domain generalized semantic segmentation. Recent approaches have explored data diversity enhancement using hallucination techniques. However, excessive hallucination can degrade performance, particularly for imbalanced datasets. As shown in our experiments, minority classes are more susceptible to performance reduction due to hallucination compared to majority classes. To tackle this challenge, we introduce a dual-stage Feature Transform (dFT) layer within the Adversarial Semantic Hallucination+ (ASH+) framework. The ASH+ framework performs a dual-stage manipulation of hallucination strength. By leveraging semantic information for each pixel, our approach adaptively adjusts the pixel-wise hallucination strength, thus providing fine-grained control over hallucination. We validate the effectiveness of our proposed method through comprehensive experiments on publicly available semantic segmentation benchmark datasets (Cityscapes and SYNTHIA). Quantitative and qualitative comparisons demonstrate that our approach is competitive with state-of-the-art methods for the Cityscapes dataset and surpasses existing solutions for the SYNTHIA dataset. Code for our framework will be made readily available to the research community.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2304.09347
Document Type :
Working Paper