Back to Search Start Over

Towards Spatio-temporal Sea Surface Temperature Forecasting via Static and Dynamic Learnable Personalized Graph Convolution Network

Authors :
Li, Xiaohan
Zhang, Gaowei
Huang, Kai
He, Zhaofeng
Publication Year :
2023

Abstract

Sea surface temperature (SST) is uniquely important to the Earth's atmosphere since its dynamics are a major force in shaping local and global climate and profoundly affect our ecosystems. Accurate forecasting of SST brings significant economic and social implications, for example, better preparation for extreme weather such as severe droughts or tropical cyclones months ahead. However, such a task faces unique challenges due to the intrinsic complexity and uncertainty of ocean systems. Recently, deep learning techniques, such as graphical neural networks (GNN), have been applied to address this task. Even though these methods have some success, they frequently have serious drawbacks when it comes to investigating dynamic spatiotemporal dependencies between signals. To solve this problem, this paper proposes a novel static and dynamic learnable personalized graph convolution network (SD-LPGC). Specifically, two graph learning layers are first constructed to respectively model the stable long-term and short-term evolutionary patterns hidden in the multivariate SST signals. Then, a learnable personalized convolution layer is designed to fuse this information. Our experiments on real SST datasets demonstrate the state-of-the-art performances of the proposed approach on the forecasting task.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2304.09290
Document Type :
Working Paper