Back to Search Start Over

Learning Sparsity of Representations with Discrete Latent Variables

Authors :
Xu, Zhao
Rubio, Daniel Onoro
Serra, Giuseppe
Niepert, Mathias
Publication Year :
2023

Abstract

Deep latent generative models have attracted increasing attention due to the capacity of combining the strengths of deep learning and probabilistic models in an elegant way. The data representations learned with the models are often continuous and dense. However in many applications, sparse representations are expected, such as learning sparse high dimensional embedding of data in an unsupervised setting, and learning multi-labels from thousands of candidate tags in a supervised setting. In some scenarios, there could be further restriction on degree of sparsity: the number of non-zero features of a representation cannot be larger than a pre-defined threshold $L_0$. In this paper we propose a sparse deep latent generative model SDLGM to explicitly model degree of sparsity and thus enable to learn the sparse structure of the data with the quantified sparsity constraint. The resulting sparsity of a representation is not fixed, but fits to the observation itself under the pre-defined restriction. In particular, we introduce to each observation $i$ an auxiliary random variable $L_i$, which models the sparsity of its representation. The sparse representations are then generated with a two-step sampling process via two Gumbel-Softmax distributions. For inference and learning, we develop an amortized variational method based on MC gradient estimator. The resulting sparse representations are differentiable with backpropagation. The experimental evaluation on multiple datasets for unsupervised and supervised learning problems shows the benefits of the proposed method.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2304.00935
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/IJCNN52387.2021.9533762