Back to Search
Start Over
Bethe Ansatz and Rogers-Ramanujan-type identities
- Publication Year :
- 2023
-
Abstract
- The Rogers-Ramanujan identity for $\!\!\phantom{|}_1\psi_1$ $$ \sum_{n\in\mathbb{Z}} \frac{(a;q)_n}{(b;q)_n} z^n\;=\; \frac{(q,b/a,az,q/az;q)_\infty}{(b,q/a,z,b/az;q)_\infty} $$ can be classified as one related to the Bethe Ansatz for ``chain length $N=1$, ground state XXZ model with an arbitrary negative spin''.
- Subjects :
- Mathematical Physics
37J35, 37J37, 70G65, 70G70
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2303.17729
- Document Type :
- Working Paper