Back to Search
Start Over
Random Young towers and quenched decay of correlations for predominantly expanding multimodal circle maps
- Publication Year :
- 2023
-
Abstract
- In this paper, we study the random dynamical system $f_\omega^n$ generated by a family of maps $\{f_{\omega_0}: \mathbb{S}^1 \to \mathbb{S}^1\}_{\omega_0 \in [-\varepsilon,\varepsilon]},$ $f_{\omega_0}(x) = \alpha \xi (x+\omega_0) +a\ (\mathrm{mod }\ 1),$ where $\xi: \mathbb S^1 \to \mathbb R$ is a non-degenerated map, $a\in [0,1)$, and $\alpha,\varepsilon>0$. Fixing a constant $c\in (0,1)$, we show that for $\alpha$ sufficiently large and for $\varepsilon > \alpha^{-1+c},$ the random dynamical system $f_\omega^n$ presents a random Young tower structure and quenched decay of correlations.<br />Comment: 38 pages, 0 figures
- Subjects :
- Mathematics - Dynamical Systems
37H12, 37H15, 37A25
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2303.16345
- Document Type :
- Working Paper