Back to Search
Start Over
Optimal Volume-Sensitive Bounds for Polytope Approximation
- Publication Year :
- 2023
-
Abstract
- Approximating convex bodies is a fundamental question in geometry and has a wide variety of applications. Consider a convex body $K$ of diameter $\Delta$ in $\textbf{R}^d$ for fixed $d$. The objective is to minimize the number of vertices (alternatively, the number of facets) of an approximating polytope for a given Hausdorff error $\varepsilon$. It is known from classical results of Dudley (1974) and Bronshteyn and Ivanov (1976) that $\Theta((\Delta/\varepsilon)^{(d-1)/2})$ vertices (alternatively, facets) are both necessary and sufficient. While this bound is tight in the worst case, that of Euclidean balls, it is far from optimal for skinny convex bodies. A natural way to characterize a convex object's skinniness is in terms of its relationship to the Euclidean ball. Given a convex body $K$, define its \emph{volume diameter} $\Delta_d$ to be the diameter of a Euclidean ball of the same volume as $K$, and define its \emph{surface diameter} $\Delta_{d-1}$ analogously for surface area. It follows from generalizations of the isoperimetric inequality that $\Delta \geq \Delta_{d-1} \geq \Delta_d$. Arya, da Fonseca, and Mount (SoCG 2012) demonstrated that the diameter-based bound could be made surface-area sensitive, improving the above bound to $O((\Delta_{d-1}/\varepsilon)^{(d-1)/2})$. In this paper, we strengthen this by proving the existence of an approximation with $O((\Delta_d/\varepsilon)^{(d-1)/2})$ facets.<br />Comment: To appear in the 39th International Symposium on Computational Geometry (SoCG 2023)
- Subjects :
- Computer Science - Computational Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2303.09586
- Document Type :
- Working Paper