Back to Search
Start Over
Ground state solutions to a coupled nonlinear logarithmic Hartree system
- Publication Year :
- 2023
-
Abstract
- In this paper, we study the following coupled nonlinear logarithmic Hartree system \begin{align*} \left\{ \displaystyle \begin{array}{ll} \displaystyle -\Delta u+ \lambda_1 u =\mu_1\left( -\frac{1}{2\pi}\ln(|x|) \ast u^2 \right)u+\beta \left( -\frac{1}{2\pi}\ln(|x|) \ast v^2 \right)u, & x \in ~ \mathbb R^2, \vspace{.4cm}\\ -\Delta v+ \lambda_2 v =\mu_2\left( -\frac{1}{2\pi}\ln(|x|) \ast v^2 \right)v +\beta\left( -\frac{1}{2\pi}\ln(|x|) \ast u^2 \right)v, & x \in ~ \mathbb R^2, \end{array} \right.\hspace{1cm} \end{align*} where $\beta, \mu_i, \lambda_i \ (i=1,2)$ are positive constants, $\ast$ denotes the convolution in $\mathbb R^2$. By considering the constraint minimum problem on the Nehari manifold, we prove the existence of ground state solutions for $\beta>0$ large enough. Moreover, we also show that every positive solution is radially symmetric and decays exponentially.
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2303.07935
- Document Type :
- Working Paper