Back to Search Start Over

Complexity of total dominator coloring in graphs

Authors :
Henning, Michael A.
Kusum
Pandey, Arti
Paul, Kaustav
Publication Year :
2023

Abstract

Let $G=(V,E)$ be a graph with no isolated vertices. A vertex $v$ totally dominate a vertex $w$ ($w \ne v$), if $v$ is adjacent to $w$. A set $D \subseteq V$ called a total dominating set of $G$ if every vertex $v\in V$ is totally dominated by some vertex in $D$. The minimum cardinality of a total dominating set is the total domination number of $G$ and is denoted by $\gamma_t(G)$. A total dominator coloring of graph $G$ is a proper coloring of vertices of $G$, so that each vertex totally dominates some color class. The total dominator chromatic number $\chi_{td}(G)$ of $G$ is the least number of colors required for a total dominator coloring of $G$. The Total Dominator Coloring problem is to find a total dominator coloring of $G$ using the minimum number of colors. It is known that the decision version of this problem is NP-complete for general graphs. We show that it remains NP-complete even when restricted to bipartite, planar and split graphs. We further study the Total Dominator Coloring problem for various graph classes, including trees, cographs and chain graphs. First, we characterize the trees having $\chi_{td}(T)=\gamma_t(T)+1$, which completes the characterization of trees achieving all possible values of $\chi_{td}(T)$. Also, we show that for a cograph $G$, $\chi_{td}(G)$ can be computed in linear-time. Moreover, we show that $2 \le \chi_{td}(G) \le 4$ for a chain graph $G$ and give characterization of chain graphs for every possible value of $\chi_{td}(G)$ in linear-time.<br />Comment: V1, 18 pages, 1 figure

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2303.01746
Document Type :
Working Paper