Back to Search Start Over

Cross-correlated quantum thermometry using diamond containing dual-defect centers

Authors :
Gupta, Madhav
Zhang, Tongtong
Yeung, Lambert
Zhang, Jiahua
Tan, Yayin
Yiu, Yau Chuen
Zhang, Shuxiang
Wang, Qi
Wang, Zhongqiang
Chu, Zhiqin
Publication Year :
2023

Abstract

The contactless temperature measurement at micro/nanoscale is vital to a broad range of fields in modern science and technology. The nitrogen vacancy (NV) center, a kind of diamond defect with unique spin-dependent photoluminescence, has been recognized as one of the most promising nanothermometers. However, this quantum thermometry technique has been prone to a number of possible perturbations, which will unavoidably degrade its actual temperature sensitivity. Here, for the first time, we have developed a cross-validated optical thermometry method using a bulk diamond sample containing both NV centers and silicon vacancy (SiV) centers. Particularly, the latter allowing all-optical method has been intrinsically immune to those influencing perturbations for the NV-based quantum thermometry, hence serving as a real-time cross validation system. As a proof-of-concept demonstration, we have shown a trustworthy temperature measurement under the influence of varying magnetic fields. This multi-modality approach allows a synchronized cross-validation of the measured temperature, which is required for micro/nanoscale quantum thermometry in complicated environments such as a living cell.

Subjects

Subjects :
Quantum Physics
Physics - Optics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2303.00073
Document Type :
Working Paper