Back to Search Start Over

AutoML in The Wild: Obstacles, Workarounds, and Expectations

Authors :
Sun, Yuan
Song, Qiurong
Gui, Xinning
Ma, Fenglong
Wang, Ting
Publication Year :
2023

Abstract

Automated machine learning (AutoML) is envisioned to make ML techniques accessible to ordinary users. Recent work has investigated the role of humans in enhancing AutoML functionality throughout a standard ML workflow. However, it is also critical to understand how users adopt existing AutoML solutions in complex, real-world settings from a holistic perspective. To fill this gap, this study conducted semi-structured interviews of AutoML users (N=19) focusing on understanding (1) the limitations of AutoML encountered by users in their real-world practices, (2) the strategies users adopt to cope with such limitations, and (3) how the limitations and workarounds impact their use of AutoML. Our findings reveal that users actively exercise user agency to overcome three major challenges arising from customizability, transparency, and privacy. Furthermore, users make cautious decisions about whether and how to apply AutoML on a case-by-case basis. Finally, we derive design implications for developing future AutoML solutions.<br />Comment: In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI'23), April 23-28, 2023, Hamburg, Germany

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2302.10827
Document Type :
Working Paper
Full Text :
https://doi.org/10.1145/3544548.3581082